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Abstract—Iterative detection-and-decoding for multi-input
multi-output (MIMO) communication systems require a soft-input
soft-output (SISO) detection algorithm, which, in the optimal
formulation, is well known to be exponentially complex in the
number of transmitting antennas. This paper presents a novel
SISO detector for MIMO systems, named SISO king decoder. It
is a tree-search branch-and-bound algorithm, which exploits the
properties of the channel matrix and the a-priori information on
the transmitted bits to reduce the overall computational complex-
ity. The proposed algorithm is compared with the SISO single
tree-search sphere decoder [1]. Simulation results are provided to
show the complexity reduction without relevant performance loss
in terms of bit-error rate.

Index Terms—Iterative detection-and-decoding system (IDDS),
max-log, multi-input multi-output (MIMO), soft-input soft-output
(SISO) detection, tree-search.

I. INTRODUCTION

MULTI-INPUT multi-output (MIMO) communication en-
ables systems with high data-rate requirements. It is

known that their capacity increases with the minimum between
the number of transmit antennas and the number of receive
antennas [2]. However, a strong limitation to MIMO systems
implementation is given by the computational complexity of
the optimal detection (which is known to be exponential with
the number of bits per transmission) [3]. Therefore, several
low-complexity suboptimal alternatives have been proposed in
the literature, such as branch-and-bound algorithms [4], lattice-
based approaches [5] and other tree-search algorithms as the A∗

algorithm [6].
A mature approach for MIMO communication systems is the

development of iterative receivers [7], [8]. The turbo concept,
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originally proposed for capacity-achieving error correcting
codes [9], is extended to iterative receivers [10], which are used
in coded MIMO. The iterative process involves the soft-input
soft-output (SISO) detector and the SISO channel decoder,
which exchange soft information to improve performance at
each iteration at the expense of a longer processing time. In
SISO detection for MIMO systems, a good balance between
performance and complexity is crucial.

Several algorithms with reduced complexity have been pro-
posed in the literature. A sub-optimal solution limited to the
case of quadrature phase-shift keying (QPSK) signaling and
based on the semidefinite relaxation of the detection problem
is presented in [11], which provides a rigorous analysis of the
computational complexity. An intermediate approach between
optimal SISO detection and Max-Log approximated detection
[3], named partial marginalization (PM), is proposed in [12].
In the PM algorithm the tradeoff between performance and
runtime, which is constant and fully predictable, is set through
a tuning parameter. Practical implementations of soft-output
detectors are the low-cost implementation for NVIDIA com-
pute unified device architecture (CUDA) graphics processing
unit (GPU) in [13] and the VLSI architecture and application-
specific integrated circuit (ASIC) synthesis in [14]. An ASIC
implementation of a SISO detector based on the minimum
mean square error parallel interference cancellation (MMSE-
PIC) is proposed in [15].

In the literature, the term sphere decoder (SD) refers to a col-
lection of extremely efficient tree-search algorithms, providing
optimal or suboptimal solutions with reduced computational
complexity with respect to (w.r.t.) the exhaustive search of
maximum likelihood (ML) detection. Inspired from the work
on vector search in lattices [16], [17], several low-complexity
algorithms based on SD have been proposed, e.g. ML decoding
for channels with memory [18] and for multidimensional mod-
ulations in fading channels [19]. In the context of multi-antenna
systems, SD has been extended to both uncoded and space-
time coded transmissions [20]. Description and performance
comparison of different methods for SD-based ML detection
are found in [21], [22]. SD can be applied to underdetermined
systems as well, i.e., when the number of transmit antennas is
greater than the number of receive antennas. However in the
latter case no pruning can be performed at the first levels of
the tree. To avoid this problem in [23], [24] specific versions
of SD have been proposed. Other SD algorithms, approaching
near-ML performance and suitable for implementation with
very-large-scale integration (VLSI) architectures, have been
proposed in [25].
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The SISO version of the SD proposed in [1] is a single
tree-search algorithm able to get the same performance as the
Max-Log approximated detector [3] at significantly reduced
computational complexity. It is based on the same single tree-
search mechanism proposed in [26] and presents the additional
remarkable feature of tuning the tradeoff between performance
and complexity reduction by adjusting only one parameter
(see Section VI and [1] for more details about the “clipping”
technique). A formal definition of optimality and optimal effi-
ciency (in terms of complexity) is given in [27] for the class
of soft-output detection algorithm based on the SD, and a soft-
output SD, being optimal under the aforementioned properties,
is presented. A soft-output extension of the hard-output fixed-
complexity SD (FSD) [28] is presented in [29]. Another im-
portant point in practical MIMO receivers is the worst-case
computational complexity, which influences directly the system
data-rate. A soft-output detector with a fixed upper limit in de-
coding complexity is proposed in [30]. The list sphere decoder
(LSD) is another suboptimal algorithm originally proposed in
[3]. It is a tree-search algorithm and reduces the computational
complexity pruning those nodes with a metric larger than a
given radius threshold. A critical point in the LSD is the
choice of the pruning radius, which trades performance and
complexity. A novel version of the LSD is proposed in [31] and
is based on a probabilistic method to select the pruning radius.
In [32] the authors propose an exact Max-Log detector based
on multiple hard SD steps (the number of needed steps is equal
to the number of transmit antennas plus one) and a suboptimal
solution, which needs only one hard SD step, leading to a
remarkable complexity saving. Hardware implementations of
SISO detectors based on SD have been proposed, such as the
field-programmable gate array (FPGA) prototype and the ASIC
synthesis in [33]. Furthermore, in [34] the authors extend the
FSD [28] to the SISO case and propose a VLSI implementation.

Contributions: In this paper we present an SISO detection
algorithm for MIMO systems, named SISO king decoder (KD),
which has been preliminarily investigated in [35]. The proposed
algorithm generalizes to the SISO case the KD developed for
the hard-input hard-ouput case in [36] for M -ary quadrature
amplitude modulation (M -QAM) constellations and in [37] for
phase-shift keying (PSK) constellations. The SISO KD is a
tree-search algorithm, which reduces the complexity through
dominance conditions. The latter exploit the properties of the
channel matrix and the a-priori information on the trasmitted
bits. The basic idea is to strongly reduce the set of candidates
to the computation of the log-likelihood ratios (LLRs) via a
pruning mechanism based on the definition of local minimum
of the metric, which arises from the Max-Log approximation
of the LLR. The advantages of the SISO KD are: (i) does not
need any decomposition or inversion of the channel matrix and
(ii) can prune already at the first levels of the tree in the case
of underdetermined systems, without any change to the formu-
lation presented in this work, as opposed to most algorithms
based on the SD. As stated in [36], the dominance conditions for
the hard case have already been derived in [38], where they are
used in a multi-user detection algorithm based on the Hopfield
neural networks. The dominance conditions have also been
employed in [39] for maximum-likelihood sequence detection

and in [40] for a multistage detection algorithm. Furthermore,
in [41] the authors show how the prior information can be incor-
porated in the dominance conditions. The proposed algorithm
makes a different use of the dominance conditions, i.e., as prun-
ing criteria in the tree-search mechanism. It does not compute
the exact Max-Log solution of the SISO detection problem,
but simulation results show that it achieves performance very
close to the Max-Log detector with significantly reduced com-
putational complexity. This result allows us to compare it with
the SISO single-tree search SD (STSSD) [1], which represents
an efficient (in terms of complexity) exact and approximated
implementation of the Max-Log solution. Here, w.r.t. our earlier
conference paper [35], the algorithm is extended to the case
of generic M-QAM constellation, a computationally efficient
way to compute the required metrics is presented and a detailed
analysis of the computational complexity (including a worst-
case numerical analysis) of KD is performed.

Outline: The remainder of this paper is organized as fol-
lows. In Section II the complex-valued and the equivalent real-
valued models of a narrowband MIMO system are described.
In Section III we briefly recall the SISO detection problem and
the approximated formulation via Max-Log. In Section IV we
present the dominance conditions and derive the SISO KD. In
Section V the complexity analysis of the proposed algorithm is
provided. In Section VI we demonstrate via simulation results
that the SISO KD is able to achieve near-optimal performance
with reduced computational complexity w.r.t. the alternatives
proposed in the literature. Finally, in Section VII we draw some
concluding remarks; proofs and derivations are confined to the
Appendix.

Notation: Lower-case bold letters denote column vectors,
with ai denoting the ith element of the vector a; upper-case
bold letters denote matrices, with Aij and ai denoting the
(i, j)th element and the ith column of the matrix A, respec-
tively; In is the n× n identity matrix; 0n×m is a n×m matrix
of zeros; diag(A) is a diagonal matrix with the same size and
the same diagonal as the square matrix A; | · |, ‖ · ‖, Pr{·},
(·)T , �(·), and �(·) denote the absolute value, the L2 norm op-
erator, the probability of events, the transpose operator and the
real and imaginary part, respectively; N (μ,Σ) (CN (μ,Σ)) is
the (circularly complex) normal distribution with mean vector
μ and covariance matrix Σ; finally, ∼ means “distributed as.”

II. SYSTEM MODEL

We consider a narrowband MIMO system with K̃ transmit
antennas and Ñ receive antennas. The corresponding discrete-
time model is

ỹ = H̃s̃+ ñ, (1)

where s̃ ∈ C
K̃×1 is the transmitted symbols vector, H̃ ∈

C
Ñ×K̃ is the fading channel matrix, ñ ∈ C

Ñ×1, with ñ ∼
CN (0Ñ×1, σ

2IÑ ), is the noise vector and ỹ ∈ C
Ñ×1 is the

received vector. We assume perfect channel state information
at the receiver, i.e., H̃ is known.

The system employs bit-interleaved coded modulation [42].
The block diagram of the transmitter is shown in Fig. 1(a). The
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Fig. 1. MIMO system: (a) block diagram of the transmitter, (b) block diagram of the IDDS.

binary stream is coded and interleaved to enforce independence
of information among the transmitted bits. The bits are then
mapped to symbols using a generic M -QAM constellation, in-
cluding binary phase-shift keying (BPSK) and QPSK as special
cases. The block diagram of the typical iterative detection-and-
decoding system (IDDS) [3] is shown in Fig. 1(b). The receiver
processes a block of w

K̃b
received vectors ỹ in each snapshot,1

where w is the codeword length and b
Δ
= log2 M . The SISO

detector relies on the perfect channel state information, namely
H̃ and σ2. During each iteration the SISO detector processes
these vectors and the a-priori soft informations and outputs
a w-dimensional vector of a-posteriori soft informations, one
for each coded bit, to which the a-priori soft informations
are subtracted to obtain the extrinsic soft informations. These
ones are deinterleaved and decoded. The SISO channel decoder
based on a-posteriori probability (APP) has been formalized in
[43]. The channel decoder provides two outputs: (i) the update
of soft informations on uncoded bits, which can be used to
make the decisions for the current iteration; (ii) the update
of soft informations on coded bits, which are converted to
extrinsic soft informations, re-interleaved and used as a-priori
soft informations for the SISO detector in the next iteration. At
the first iteration the a-priori soft informations are set to zero.
The iterative process stops after a preset number of iterations
and the receiver moves to the next snapshot.

A. Equivalent Real-Valued Model

For our purposes, it is convenient to refer to an equivalent
real-valued model with transmitted symbols drawn from a
BPSK constellation. This can be obtained in two steps. Since
the considered constellations are separable, we can equivalently
rewrite the system model in (1) as

y = H̄s+ n, (2)

where y
Δ
=

(
�(ỹ)
�(ỹ)

)
∈ R

N×1, s
Δ
=

(
�(s̃)
�(s̃)

)
∈ R

2K̃×1, n
Δ
=(

�(ñ)
�(ñ)

)
∈ R

N×1, N
Δ
= 2Ñ and

H̄
Δ
=

(
H̃R −H̃I

H̃I H̃R

)
, (3)

where H̃R
Δ
= �(H̃), H̃I

Δ
= �(H̃); also it can be readily veri-

fied that n ∼ N (0N×1,
σ2

2 IN ). Secondly, we can express each

1A snapshot consists of the transmission of a single codeword.

real-valued constellation in terms of a vector of b antipodal sig-
nals, that is s = Px, where P ∈ Z

2K̃×K and x ∈ {−1,+1}K ,

K
Δ
= K̃b. The matrix P determines the mapping from binary

to real-valued symbols and its expression can be derived from
the formulation in [23], [44]. Substituting such expression in

(2) and defining H
Δ
= H̄P leads to

y = Hx+ n. (4)

It needs to note that the matrix P prevents the use of Gray
mapping with higher order constellations (M > 4), because of
the presence of the a-priori information in the SISO detector
formulation (see Section III).

III. SISO DETECTION

The SISO detector computes the a-posteriori LLRs ∀ i =
1, . . . ,K [3]

λi
Δ
= ln

Pr {xi = +1|y}
Pr {xi = −1|y}

= ln

∑
x∈X :xi=+1

exp

(
−‖y−Hx‖2

σ2 + 1
2

K∑
j=1

xjλ
A
j

)

∑
x∈X :xi=−1

exp

(
−‖y−Hx‖2

σ2 + 1
2

K∑
j=1

xjλA
j

) , (5)

whereX Δ
= {−1,+1}K andλA

j
Δ
= ln

Pr{xj=+1}
Pr{xj=−1} , j = 1, . . . ,K,

are the a-priori LLRs. From inspection of (5), it is apparent that
the computation of λi, ∀ i = 1, . . . ,K, requires the following
2K terms

exp

⎛
⎝−‖y −Hx‖2

σ2
+

1

2

K∑
j=1

xjλ
A
j

⎞
⎠ , ∀x ∈ X ; (6)

therefore it is exponentially complex with K, thus leading to
prohibitive complexity as the number of bits per transmitting
vector grows. By applying the Max-Log approximation [3]

ln
∑
i

exp(ai) ≈ max
i

ai, (7)

the ith a-posteriori LLR can be approximated as

λM
i

Δ
= min

x∈X :xi=−1
m(x)− min

x∈X :xi=+1
m(x), (8)

where

m(x)
Δ
=

‖y −Hx‖2
σ2

− 1

2

K∑
j=1

xjλ
A
j . (9)
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The loss in performance of (8) w.r.t. the exact formulation in
(5) has been shown to be negligible2 [45].

Equation (8) can also be conveniently expressed as [32], [41]

λM
i =

{
m

(
x(i)

)
−m(xMAP ), xMAP

i = +1

m(xMAP )−m
(
x(i)

)
, xMAP

i = −1,
(10)

where

xMAP Δ
= argmax

x∈X
Pr {x|y} (11)

is the maximum a-posteriori (MAP) solution3 and

x(i) Δ
= argmin

x∈X :xi=−xMAP
i

m(x) (12)

is the ith counter-hypothesis [1].
Remarks: The Max-Log approximation itself does not lead

to a complexity reduction, because (8) still requires the com-
putation of 2K metrics; indeed, it was originally introduced
to remedy to the numerical instability, which affects (5) [45].
Nonetheless (8) can be exploited to design low-complexity
algorithms [1], [32], [41].

IV. SISO KING DECODER

In this section we describe the main contribution of this
paper, the SISO KD algorithm which is derived in terms of a
tree-search where the cost function at each node is based on the
generalization of the dominance condition (see [38], [39], [41]).
Furthermore we provide a computationally efficient method to
compute the metric defined in (9).

A. Dominance Conditions

We reformulate the dominance conditions in the general
case of SISO detection by taking into account the a-priori
information. Let αi(x) be a vector which differs from x only

in the ith element, i.e., αi(x)
Δ
= [x1 . . .−xi . . . xK ]T . Such a

vector will be referred to as the ith adjacent of x. A vector x
that satisfies the set of conditions

m(x) < m(αi(x)), ∀ i = 1, . . . ,K, (13)

is a local minimum of m(x). The ith condition in (13) is
equivalently written as (see the Appendix)

xi

⎡
⎢⎣ 4

σ2

⎛
⎜⎝hT

i y −
K∑
j=1
j �=i

Gijxj

⎞
⎟⎠+ λA

i

⎤
⎥⎦ > 0, (14)

where G
Δ
= HTH . Eq. (14) does not allow an efficient search

of the local minima of m(x), because it depends on all the
elements of x. We observe that verifing (14) is a matter of de-

2This is not always true for underdetermined scenarios, as it will be shown
in Section VI.

3In fact, it can be readily verified that xMAP = argmax
x∈X

m(x).

termining the sign of the left-hand side (l.h.s.) or, equivalently,
the sign of the expression in the brackets

4

σ2

⎛
⎜⎝hT

i y −
K∑
j=1
j �=i

Gijxj

⎞
⎟⎠+ λA

i , (15)

which on occasion can be determined even without knowledge
on x. We consider the condition∣∣∣∣ 4σ2

hT
i y + λA

i

∣∣∣∣ > 4

σ2

K∑
j=1
j �=i

|Gij |, (16)

which does not depend on x. Noticing that the right-hand side

(r.h.s.) of (16) is the maximum possible value of − 4
σ2

K∑
j=1

Gijxj

as x changes, it is apparent that, if (16) is satisfied, (15) has the
same sign as the argument of the absolute value in the l.h.s.
of (16), regardless of the elements in x. Therefore, if (16) is
satisfied, we can conclude that all the vectors x such that

xi 
= sign

(
4

σ2
hT
i y + λA

i

)
(17)

cannot be local minima, because they cannot satisfy (14),
namely the ith condition in (13), and can be excluded from the
search.

Furthermore, if a partial vector ρi−1(x)
Δ
= [x1 . . . xi−1]

T is
available, a condition more general than (16) can be derived.
Noticing that (15) can be rewritten as

4

σ2

⎛
⎝hT

i y −
i−1∑
j=1

Gijxj

⎞
⎠+ λA

i − 4

σ2

K∑
j=i+1

Gijxj , (18)

we consider the less restrictive condition∣∣∣∣∣∣
4

σ2

⎛
⎝hT

i y −
i−1∑
j=1

Gijxj

⎞
⎠+ λA

i

∣∣∣∣∣∣ >
4

σ2

K∑
j=i+1

|Gij |, (19)

which depends only on ρi−1(x). Since the r.h.s. of (19) is the

maximum possible value of − 4
σ2

K∑
j=i+1

Gijxj as [xi+1 . . . xK ]

changes, one can notice that, if (19) is satisfied, (15) has the same
sign as the argument of the absolute value in the l.h.s. of (19)

qi (ρi−1(x))
Δ
=

4

σ2

⎛
⎝hT

i y −
i−1∑
j=1

Gijxj

⎞
⎠+ λA

i , (20)

regardless of the remaining elements [xi+1 . . . xK ]. Therefore,
if (19) is satisfied for a given ρi−1(x), we can conclude that all
the vectors x such that

xi 
= sign (qi (ρi−1(x))) (21)

cannot be local minima, because they cannot satisfy the ith
condition in (13), and can be excluded from the search.
Equation (19) reduces to (16) for i = 1 and can be thought as a
generalization of (16) conditioned to the knowledge of ρi−1(x).
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Fig. 2. Binary tree representation of MIMO detection problem for the case K = 4.

For a given i, (19) is named dominance condition [37], since it
assesses whether if the projection of the y on the ith column of
H (once suppressed the partial interference given by ρi−1(x))
and the a-priori information are strong enough to dominate over
the worst-case residual interference, which is given by the r.h.s.
When (19) is satisfied, such a condition allows to decide on xi,
without making any assumption on [xi+1 . . . xK ]. It is worth
noticing that, when i = K, (19) is always satisfied, because the
r.h.s. is null. Nevertheless (20) needs to be computed, to decide
on xK .

B. Algorithm Formulation

The computation of the K LLRs in (8) requires the metric
of the MAP solution and of the K counter-hypotheses, which
can be computed through multiple searches [32]. Differently,
in this paper, we propose a single tree-search where we apply
the dominance conditions as pruning criterion at each node. The
result is a reduced set of possible solutions, that always contains
the MAP solution, but not the counter-hypotheses. These are
extracted from the reduced set of candidates without the need
of repeated searches.

1) Local Minima Tree-Search: The local minima search can
be set up as a search on a binary tree with K + 1 levels
numbered from 0 (the root level) to K (the leaves level). Fig. 2
shows the binary tree when K = 4, which arises, for instance,
from a system with K̃ = 2 employing QPSK modulation or
K̃ = 4 employing BPSK modulation. Each of the 2K leaves
is associated with one possible vector x and each non-leaf node
corresponds to a partial vector according to its level and the
labels of the branches in the path from the root to the node
itself.4 The proposed local minima search belongs to the general
class of branch-and-bound algorithms [46] and is formalized in
Table I with a pseudo-code. It uses the dominance condition as
a criterion to prune portions of the tree: when the current node
n satisfies (19), one of its children is pruned according to (21)
and, consequently, all the vectors associated with the leaves
belonging to the corresponding sub-tree will not be included
in the reduced set. The algorithm uses several sub-procedures,
which have the following (intuitive) meaning:

• next_node(T ): return the next node of the tree T to be
visited or return NULL if there are no more nodes;

4Without loss of generality, we assume that the left branch departing from a
non-leaf node is labeled with −1 and the right one with +1.

TABLE I
LOCAL MINIMA TREE-SEARCH

• set_visited(T, n): mark the node n as visited in the
tree T ;

• vector(n): return the partial vector associated to the
node n;

• level(n): return the level number of the node n;
• compute_q(i, v): compute qi(v) according to (20);
• bounding(i): return the r.h.s. of the ith dominance

condition;
• prune_left(T, n): prune the left child (and the related

sub-tree) of the node n from the tree T ;
• prune_right(T, n): prune the right child (and the related

sub-tree) of the node n from the tree T .

The procedure next_node(T ) can be designed to select the
next node according to different strategies. The top-down5

approach is the most convenient, because it allows to prune
the leaves that cannot be local minima as soon as possible.
Employing a different strategy can lead to visit a node that
will be anyway pruned during the visit to one of its ancestors,
thus wasting computational resources. The two well-known
top-down visit fashions are depth-first and breadth-first [46],
which represent the two most common visiting strategies for
tree-search algorithms. The SISO KD can employ both of them
(and any other top-down visiting strategy) without affecting

5The tree is visited starting from the root node towards the leaves; a node can
be visited only if all its ancestors have been visited.



PAPA et al.: SOFT-INPUT SOFT-OUTPUT MIMO DETECTOR WITH NEAR-OPTIMAL PERFORMANCE 4325

Fig. 3. An example of binary tree pruned by the local minima tree-search algorithm in Table I for the case K = 4.

its performance and computational complexity, because the
pruning criterion depends only on the partial vector associated
to the node under analysis and not on the previous history of
the execution. This is not true for some of the algorithms based
on the SD. The STSSD is a depth-first-only tree-search and
starts with an infinite initial pruning radius, thus, its pruning
capabilities are strongly conditioned by the first visited path
from the root to the first visited leaf and also by the successive
visiting order. The LSD is a breadth-first tree-search and its
performance and pruning capabilities are strongly affected by
the choice of the pruning radius.6

An example of the final state of the binary tree for the case
K = 4 after the execution of the pruning process is shown in
Fig. 3, where shaded branches and nodes have been cut.

2) LLR Approximation: The procedure terminates with a set
of vectors associated to the survived leaves, denoted with S ,
which contains the local minima and possibly other vectors not
excluded by the dominance conditions (cf. (19)). The latter is
analogous to the candidate list of the LSD in [3], although the
SISO KD uses a different pruning criterion. While xMAP ∈ S ,
since a global minimum is also a local minimum, there is no
guarantee that x(i) ∈ S , ∀ i = 1, . . . ,K, because x(i) is not
necessarily a local minimum. The exact x(i) could be found
executing another tree-search, not checking the dominance con-
ditions on the nodes until the level i− 1 and pruning in advance
all the branches at level i (and the corresponding sub-trees)
labeled with xMAP

i . This approach would need additional K
searches on the tree. With the aim of reducing the complexity,
we avoid these multiple searches by approximating the LLRs
using only the vectors found in S . Thus, we define the set

X (i) Δ
=

{
x ∈ S : xi = −xMAP

i

}
∪
{
αi(x

MAP )
}
. (22)

and

x(i) Δ
= argmin

x∈X (i)

m(x). (23)

The LLRs are then approximated as

λK
i

Δ
=

{
m

(
x(i)

)
−m(xMAP ), xMAP

i = +1

m(xMAP )−m
(
x(i)

)
, xMAP

i = −1.
(24)

6It can be implemented in depth-first mode with complexity depending also
on the visiting order.

The reason for adding αi(x
MAP ) in (22) is because when

x(i) is adjacent to xMAP , it may be pruned during the tree-
search, since it cannot be a local minimum by definition. Thus,
taking into account in every case αi(x

MAP ), ∀i = 1, . . . ,K,
represents another chance to find x(i). Furthermore, this choice
always allows LLR (approximate) evaluation, even in the case
{x ∈ S : xi = −xMAP

i } = ∅, since the pruning mechanism
does not ensure that the final set S contains at least a vector
such that xi = −xMAP

i , ∀ i = 1, . . . ,K. This enrichment of
the final set S with the adjacents to the MAP solution is often
named bit-flipping and appears in different versions in prior
works, such as [32]. We will show in Section VI that the choice
in (22) leads to near-optimal performances.

C. Cumulative Metric

Even though the reduction of possible candidates reduces the
computational complexity w.r.t. the exhaustive search, further
savings can be obtained by efficiently computing the metric
m(x). Equation (9) can be written as cumulative sum of partial
contributions, each one depending on a portion of the vector x.
In addition, these contributions re-use portions of the already
computed dominance conditions, leading to a further complex-
ity reduction.

We start by showing that (9) can be expanded as

m(x) =
yTy − 2xTHTy + xTGx

σ2
− 1

2

K∑
j=1

xjλ
A
j . (25)

Since (24) is a difference between two metrics, all terms not
depending on x vanish. In view of the aforementioned consid-
eration, we define the equivalent metric

m̄(x)
Δ
=

xTGx− xTEx− 2xTHTy

σ2
− 1

2

K∑
j=1

xjλ
A
j , (26)

where E
Δ
= diag(G) and xTEx does not depend on x, because

x2
i = 1, ∀ i = 1, . . . ,K. Since G−E is symmetric with zero

diagonal, denoting with GL and GU its lower and upper
triangular part, respectively, we have

xT (G−E)x =xT (GL +GU )x =

=xT
(
GL +GT

L

)
x = 2xTGLx (27)
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and

m̄(x) =
2xT

(
GLx−HTy

)
σ2

− 1

2

K∑
j=1

xjλ
A
j , (28)

that is rewritten as

m̄(x) =
K∑
i=1

xi

⎡
⎣ 2

σ2

⎛
⎝ i−1∑

j=1

Gijxj − hT
i y

⎞
⎠− λA

i

2

⎤
⎦ . (29)

Finally, the equivalent metric can be computed as

m̄(x) =

K∑
i=1

m̄i (ρi(x)) , (30)

where

m̄i (ρi(x))
Δ
= xi

⎡
⎣ 2

σ2

⎛
⎝ i−1∑

j=1

Gijxj − hT
i y

⎞
⎠− λA

i

2

⎤
⎦ , (31)

∀ i = 1, . . . ,K, are the metric increments and, since m̄i(ρi(x))
depends only on xj , j = 1, . . . , i, each of the K increments can
be computed when visiting the corresponding node at level i
during the tree-search.

It is worth noticing that the formulation in (30) is equivalent
in the MIMO context to the Ungerboeck recursion used in the
equalization of inter-symbol-interference channels [47], [48].

Furthermore, it can be noticed that

m̄i (ρi(x)) = −xi

2
qi (ρi−1(x)) . (32)

Hence a further complexity saving is achieved: at a given level
i of the tree, since qi(ρi−1(x)) is already available from the
computation of the dominance condition, the corresponding
increment to the metric m̄i(ρi(x)) is computed simply mul-
tiplying it by −xi

2 .
The algorithm in Table I is modified as in Table II to include

the metrics computation. Four procedures are added:

• get_metric(n): get the metric of the node n;
• set_metric(n,m): set the metric m for the node n;
• right_child(n): return the right child of the node n;
• left_child(n): return the left child of the node n;

V. COMPUTATIONAL COMPLEXITY

A detailed complexity analysis of the proposed algorithm is
reported in this section. A common complexity metric for the
broad class of tree-search algorithms is the average number of
visited nodes [1]. However, two algorithms which use different
trees,7 cannot be compared on the basis of this metric, because
of the different number of nodes.

On the basis of the aforementioned reason, we choose the
number of elementary operations performed by the algorithm
as an adequate metric for complexity analysis. Also, we prefer

7In our case, a binary tree for the SISO KD and a M -ary tree for the STSSD.

TABLE II
LOCAL MINIMA TREE-SEARCH WITH METRICS COMPUTATION

to count separately sums and products, because each of them
affects the execution time of the algorithm in a different way
(in fact, a product is usually more complex than a sum).

A. Pre-Processing

The main contribution to the complexity comes from dom-
inance conditions and metrics computation. By inspection of
(19), we notice that only the term at the l.h.s.

4

σ2

i−1∑
j=1

Gijxj (33)

needs to be computed at each visited node. The remaining
terms in (19) depend only on H , y and λA (the vector of the
a-priori LLRs) and not on ρi−1(x). Thus they can be computed
together with G before the tree-search is started. The evaluation
of the aforementioned terms forms the pre-processing step of
the algorithm, whose complexity is fixed by K̃, Ñ , and b and
is summarized in the first five rows of Table III. Even though
4
σ2G could be computed directly, we prefer to go through
several steps, which exploit the structure of H̄ and P and
produce intermediate results useful in the following.8 We start
by observing that

Ḡ
Δ
= H̄

T
H̄

=

(
H̃

T

RH̃R + H̃
T

I H̃I H̃
T

I H̃R − H̃
T

RH̃I

H̃
T

RH̃I − H̃
T

I H̃R H̃
T

RH̃R + H̃
T

I H̃I

)
(34)

has only nḠ
Δ
= K̃(K̃ + 1) independent elements (since the

other elements are given by symmetry). Hence the evaluation

8The operations counts described here fit the case of an even b and b >
2 (square M -QAM with M > 4); the cases of an odd b and b = 2 are
straightforward and are omitted for the sake of brevity.
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TABLE III
SISO KING DECODER OPERATIONS COUNTS

of 4
σ2 Ḡ requires (N − 1)nḠ sums and (N + 1)nḠ products,

as reported in the first row in Table III. Exploiting the par-
ticular structure of P (since it can be formulated as a row-
concatenation of scaled identity matrices with the last block

being I2K̃ ), 4
σ2 Ĝ

Δ
= 4

σ2P
T Ḡ requires ( b2 − 1)nḠ products

(assuming 4
σ2 Ḡ has been already computed) and 4

σ2G =
4
σ2 ĜP requires ( b2 − 1) b2nḠ products (assuming 4

σ2 Ĝ has
been already computed), as reported in the second and third
row in Table III, respectively. The fourth row of Table III shows
the complexity of 4

σ2 H̄
T
y + λA, which can be rewritten as

4
σ2P

T H̄
T
y + λA. Observing that 4

σ2P
T H̄

T
y is a scaled rep-

etition of 4
σ2 H̄

T
y, only 2K̃(N − 1) +K sums and 2K̃(N +

b
2 ) products are required, rather than KN sums and K(N + 1)
products.

The number of sums for the r.h.s. of the dominance condi-
tions is the expansion of

K−2∑
i=1

(K − i− 1), (35)

which comes from the observation that for the ith dominance
condition it needs to execute K − i− 1 sums, except for i =
K − 1, for which the r.h.s. is equal to 4

σ2 |GK−1K |, and i = K,
for which the r.h.s. is zero. The expansion is shown in the fifth
row of Table III.

B. Tree-Search

The sixth row of Table III refers to the tree-pruning pro-
cess, whose complexity is not deterministic. Indeed, at level

i = 1, . . . ,K, we need to compute the l.h.s. of a dominance
condition for each survived node9 of the level i− 1, namely
compute (33), and subtract it from the remainder of the l.h.s.,
already computed in the pre-processing step. Also, (33) can be
rewritten as

ǧT
i

i−1∑
j=1

pjxj = ǧT
i (p1 . . . pi−1)ρi−1(x), (36)

where Ǧ
Δ
= Ĝ

T
. Since the term (p1 . . . pi−1)ρi−1(x) does not

depend on H , y or λA, but only on the particular node being
visited, it can be precomputed and “stored” in the node.10 In this
way the computational cost of the l.h.s. of the dominance con-
dition is fixed to 2K̃ sums and 2K̃ products, regardless of the
level number of the node being visited. The direct calculation of
(33) requires i− 1 sums and i− 1 products, thus the alternative
formulation in (36) leads to a lower complexity ∀ i = 2K̃ +
2, . . . ,K. Furthermore, ∀ i = 1, . . . , 2K̃ + 1, it is possible to
get the same complexity as the direct calculation, neglecting the
last 2K̃ − i+ 1 rows of the matrix (p1 . . . pi−1), which are all
zeros, and, consequently, the last 2K̃ − i+ 1 elements of ǧi.
Finally, the computational cost of the dominance conditions for
both sums and products is

2K̃+1∑
i=1

(i− 1)si−1 + 2K̃
K∑

i=2K̃+2

si−1

=

2K̃∑
i=1

isi + 2K̃

K−1∑
i=2K̃+1

si. (37)

The seventh row of Table III reports the contribution of the
computation of the metric increments. Exploiting the cumula-
tive formulation (see Section IV-C) and postponing the division
by 2 in (32) after the final LLRs computation in (24),11 each
metric increment requires only one sum, thus at level i > 1 si
sums are needed.

C. Post-Processing

The complexity of the last two steps is fixed by b and
K̃. The cumulative formulation (see Section IV-C) is used
also for computation of m(αi(x

MAP )), ∀ i = 1, . . . ,K. By
ordering these adjacents according to the index of the element
different from the MAP solution, namely from α1(x

MAP ) to
αK(xMAP ), and processing the set formed by the ith element
of every vector, we observe that ∀ i = 1, . . . ,K only i+ 1
increments have to be computed, because the other K − i− 1
are equal to the (i+ 1)th (they share the same partial vector).
On the basis of the aforementioned reason and applying again

9The number of survived nodes at level i is denoted with si.
10It is worth noticing that, though the memory required for this “storing”

grows exponentially with K, the complexity analysis is focused on execution
time, thus memory is not considered a severe constraint.

11This change does not affect the result and leads to a further complexity
saving, replacing the execution of one division for each metric increment with
only K divisions by 2 on the results of (24).
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the alternative calculation in (36), it can be shown that the
computation of the metrics of the K adjacents to the MAP
solution has a computational cost that grows with K̃3 and
b2 for both sums and products,12 as shown in the eighth row
of Table III.

Finally, noticing that (24) can be rewritten as

λK
i = xMAP

i

(
m̄

(
x(i)

)
− m̄(xMAP )

)
, (38)

each LLR requires only a sum and a product.13 This complexity
is reported in the last row of Table III, where we also count K
division by 2, as products, which compensate the divisions not
performedforeachmetric incrementasexplained inSection V-B,
and K additional sums that are needed to compute the extrinsic
LLRs by subtracting λA

i from λK
i , ∀ i = 1, . . . ,K.

VI. SIMULATION RESULTS

System performance in terms of bit-error rate (BER) and
average computational complexity, both vs signal-to-noise ratio
(SNR) per receive antenna, have been obtained via Monte
Carlo simulations. The SNR is defined as the ratio between
the average energy per receive antenna and the noise variance
σ2. The simulated system employs a recursive convolutional
encoder with rate 1

2 , constraint length 3, generators (7, 5)8
and feedback polynomial 78; the length of the codewords is
2000 bits. The permutation pattern of the interleaver has been
chosen randomly for each snapshot. The channel coefficients
of H̃ have been generated according to CN (0,1) for each
MIMO transmission. The simulations have been averaged over
105 snapshots. We have considered four system setups, which
differ in the number of antennas and in the employed constel-
lation: K̃ = Ñ = 2 with 16-QAM, K̃ = Ñ = 4 with 16-QAM,
K̃ = Ñ = 2 with 64-QAM and K̃ = Ñ = 4 with 64-QAM.
We have chosen all setups as fully-loaded, i.e., K̃ = Ñ , because
our element of comparison, the STSSD, does not support the
underdetermined scenarios, i.e., K̃ > Ñ . As already pointed
out in Section I, the STSSD allows to tune the tradeoff between
performance and complexity reduction by adjusting a parame-
ter, which is the maximum permitted value of the normalized14

LLRs, named Lmax; this technique is referred to as clipping.
We study optimal SISO detection, the SISO KD, the STSSD
without clipping (Lmax = +∞, then attaining exact Max-Log
performance [1]), the STSSD with Lmax = 0.4 and Lmax =
0.1, and the MMSE-PIC, as formalized in [15].

Fig. 4 shows the BER as a function of SNR for iterations 1, 2,
and 6 (the successive iterations do not improve the performance
significantly) for the case K̃ = Ñ = 2 with 16-QAM. For each
iteration, simulations demonstrate that the STSSD without clip-
ping and the SISO KD achieve roughly the same performance,
which is very close to the optimum. The STSSD with Lmax =

12The exact expressions are omitted for the sake of brevity.
13This product is actually a sign change, which is tipically much faster than a

standard product. However, to keep simplicity in the complexity evaluation, we
have considered the sign changes as they were standard products, which leads
to a pessimistic analysis of the complexity of the proposed approach and one
can expect to gain further complexity reduction in a practical implementation.

14In the context of the STSSD, the normalized LLR is the LLR divided by σ2.

Fig. 4. BER vs SNR (dB) for an MIMO system with the IDDS, 16-QAM and
K̃ = Ñ = 2. Comparison of the optimal SISO detector, MMSE-PIC, STSSD
(Lmax = 0.1, 0.4,+∞) and SISO KD.

Fig. 5. Average number of elementary operations (sums and products) needed
for algorithm implementation vs SNR (dB); first iteration of the IDDS for an
MIMO system with 16-QAM and K̃ = Ñ = 2. Comparison of MMSE-PIC,
STSSD (Lmax = 0.1, 0.4,+∞) and SISO KD.

0.4 exhibits a relatively small performance loss, that is less
than 0.5 dB of SNR when BER = 10−3 in the sixth iteration.
Conversely, a lower value of Lmax produces a considerable loss
in performance, which increases with the iteration index. In
the case Lmax = 0.1, the STSSD achieves BER equal to 10−3

with almost 1, 2 and more than 2 dB of SNR more w.r.t. the
optimum in the first, the second and sixth iteration, respectively.
The MMSE-PIC performance at BER = 10−3 is similar to the
STSSD with Lmax = 0.1 and is even worse for lower values
of BER.

Figs. 5 and 6 report the average number of sums and products
as a function of the SNR executed by the MMSE-PIC, the SISO
KD and the STSSD (in the three cases Lmax = 0.1, 0.4,+∞)
in the first iteration and in the first six iterations of the IDDS,
respectively. The MMSE-PIC’s and STSSD’s computational
complexity has been evaluated by counting the operations
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Fig. 6. Average number of elementary operations (sums and products) needed
for algorithm implementation vs SNR (dB); accumulation of the first six
iterations of the IDDS for an MIMO system with 16-QAM and K̃ = Ñ = 2.
Comparison of MMSE-PIC, STSSD (Lmax = 0.1, 0.4,+∞) and SISO KD.

executed in the implementation made available by the authors
of [1]. Since the STSSD uses the complex-valued system model
in (1), it executes operations on complex-valued numbers. With
the intent of a fair comparison, we count two real-valued sums
for each complex-valued sum and two real-valued sums and
four real-valued products for each complex-valued product.
The complexity of the channel matrix decomposition has been
included in the STSSD’s operations counts. It is worth noticing
that in a quasi-static scenario, namely when the channel matrix
is slowly varying, the decomposition may be executed less
frequently than detection, thus leading to a complexity sav-
ing, which, anyway, is small, because the number of required
operations is negligible w.r.t. the overall STSSD complexity.
Nonetheless, it can be noticed that a practical implementation of
the STSSD requires, in any case, a module for the channel ma-
trix decomposition, which contributes to the overall silicon area
required. As expected, the STSSD reduces its complexity as
the SNR grows. Furthermore, it brings down the complexity as
Lmax decreases. Nevertheless, it is manifest that the SISO KD
outperforms the STSSD for both Lmax = +∞ and Lmax = 0.4
and for both sums and products. The STSSD with Lmax = 0.1
is closer to the SISO KD, particularly for the average number
of products, but it exhibits substantially worse performance, as
already observed. The constant complexity of the MMSE-PIC
is between the SISO KD and the STSSD with Lmax = 0.1 for
the products and very close to the SISO KD for the sums. On the
other hand, we remind that its performance loss is considerable.

An additional favourable feature of the SISO KD is shown in
Fig. 7, which reports the worst-case complexity of the consid-
ered algorithms as the 99.9% percentile of the number of sums
and products executed in the first six iterations of the IDDS
vs SNR. It is clear that the SISO KD presents a considerably
lower worst-case complexity w.r.t. the STSSD (in the three
cases Lmax = 0.1, 0.4,+∞) for all the considered values of
SNR. This reflects in a lower worst-case time of execution.

Fig. 7. Worst-case complexity as the 99.9% percentile of the number of
elementary operations (sums and products) needed for algorithm implemen-
tation vs SNR (dB); accumulation of the first six iterations of the IDDS for
an MIMO system with 16-QAM and K̃ = Ñ = 2. Comparison of STSSD
(Lmax = 0.1, 0.4,+∞) and SISO KD.

Fig. 8. BER vs SNR (dB) for an MIMO system with the IDDS, 16-QAM and
K̃ = Ñ = 4. Comparison of the optimal SISO detector, MMSE-PIC, STSSD
(Lmax = 0.1, 0.4,+∞) and SISO KD.

Fig. 8 shows the performance for the case K̃ = Ñ = 4
with 16-QAM for iterations 1, 2, and 6 (also in this case the
successive iterations do not improve the performance signif-
icantly). With this setup, both the STSSD without clipping
(Max-Log performance) and the SISO KD exhibit a slight per-
formance loss w.r.t. the optimum, quantifiable in about 0.5 dB
of SNR when the target BER is 10−3 in the second iteration.
The performance loss of the STSSD with Lmax = 0.4 w.r.t. the
optimum is similar in the first two iterations and slightly higher
in the sixth one (less than 0.5 dB of additional SNR to achieve
BER = 10−3). Differently, in the case Lmax = 0.1, the perfor-
mance loss w.r.t. the optimum is apparent: 1.5 dB and 2.5 dB
of additional SNR to achieve the BER of 10−3 in second and
sixth iteration, respectively. The MMSE-PIC loses 1 dB more
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Fig. 9. Average number of elementary operations (sums and products) needed
for algorithm implementation vs SNR (dB); first iteration of the IDDS for an
MIMO system with 16-QAM and K̃ = Ñ = 4. Comparison of MMSE-PIC,
STSSD (Lmax = 0.1, 0.4,+∞) and SISO KD.

Fig. 10. Average number of elementary operations (sums and products)
needed for algorithm implementation vs SNR (dB); accumulation of the first six
iterations of the IDDS for an MIMO system with 16-QAM and K̃ = Ñ = 4.
Comparison of MMSE-PIC, STSSD (Lmax = 0.1, 0.4,+∞) and SISO KD.

in the second iteration at BER = 10−3 w.r.t. the STSSD with
Lmax = 0.1 and is comparable to it in the sixth one.

Figs. 9 and 10 show the results related to the computational
complexity for the case K̃ = Ñ = 4 with 16-QAM. For this
setup the complexity of the MMSE-PIC is always the lowest
one for both sums and products. In the first iteration (Fig. 9)
the SISO KD exhibits a lower complexity w.r.t. the STSSD
without clipping for all values of SNR, while it is comparable
to the STSSD with Lmax = 0.4. The complexity of the SISO
KD is almost always greater than the one of the STSSD with
Lmax = 0.1, which, for the previous discussion, cannot be any-
way considered a good solution to the SISO detection problem
in terms of BER. It is worth noticing that the complexity of

Fig. 11. Worst-case complexity as the 99.9% percentile of the number of
elementary operations (sums and products) needed for algorithm implemen-
tation vs SNR (dB); accumulation of the first six iterations of the IDDS for
an MIMO system with 16-QAM and K̃ = Ñ = 4. Comparison of STSSD
(Lmax = 0.1, 0.4,+∞) and SISO KD.

the SISO KD grows with the SNR, which can be explained
rewriting (19) as15∣∣∣∣∣∣hT

i Hx̄+ hT
i n−

i−1∑
j=1

Gijxj

∣∣∣∣∣∣ >
K∑

j=i+1

|Gij |, (39)

where we used (4) and x̄ is the actual transmitted vector. Given
a particular system setup, the only term in (39) affected by the
value of the SNR is hT

i n, whose variance decreases as the SNR
grows. This means that the dominance conditions are less likely
satisfied as the SNR grows, which leads to a lower pruning
capability of the algorithm and, thus, to a higher complexity.
With regard to the cumulated analysis of the first six iterations
(Fig. 10), we observe that the computational complexity of the
SISO KD is always lower than the one of the STSSD without
clipping and comparable to the one of the STSSD with Lmax =
0.4 for higher values of SNR. The STSSD with Lmax = 0.1
achieves lower complexity w.r.t. the SISO KD, but, as already
pointed out, it exhibits worse performance in terms of BER.
Furthermore, we observe that the complexity of the SISO KD
grows slightly until 6 dB of SNR and then starts decreasing.
This can be explained rewriting (19) for the iterations after the
first one as∣∣∣∣∣∣
4

σ2

⎛
⎝hT

i Hx̄+ hT
i n−

i−1∑
j=1

Gijxj

⎞
⎠+ λA

i

∣∣∣∣∣∣
>

4

σ2

K∑
j=i+1

|Gij |. (40)

At low SNR, the absolute values of λA
i , ∀ i = 1, . . . , k, are

likely to be low, because of the uncertainty originating from the

15As already noticed in Section II, in the first iteration there is no a-priori
information for the SISO detection, namely λA

i = 0, ∀ i = 1, . . . ,K.
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Fig. 12. BER vs SNR (dB) for an MIMO system with the IDDS, 64-QAM and
K̃ = Ñ = 2. Comparison of the optimal SISO detector, MMSE-PIC, STSSD
(Lmax = 0.1, 0.4,+∞) and SISO KD

Fig. 13. Average number of elementary operations (sums and products)
needed for algorithm implementation vs SNR (dB); first iteration of the IDDS
for an MIMO system with 64-QAM and K̃ = Ñ = 2. Comparison of MMSE-
PIC, STSSD (Lmax = 0.1, 0.4,+∞) and SISO KD.

high noise on the channel, thus (40) is well approximated by
(39) and we get the growing behaviour of the complexity as in
the first iteration. At high SNR, the λA

i , ∀ i = 1, . . . , k, cannot
be neglected anymore, because their absolute values are higher,
and become the predominant term in (40), making it more likely
to be satisfied.16

Fig. 11 shows the worst-case complexity of the considered
algorithms as the 99.9% percentile of the number of sums and
products executed in the first six iterations of the IDDS vs
SNR for the case K̃ = Ñ = 4. The SISO KD exhibits a worst-
case complexity substantially lower than the one of the STSSD

16A similar profile (but less pronounced) of the complexity curves for both
the first iteration (Fig. 5) and the first six iterations (Fig. 6) can be noticed also
for the case K̃ = Ñ = 2.

Fig. 14. Average number of elementary operations (sums and products)
needed for algorithm implementation vs SNR (dB); accumulation of the first six
iterations of the IDDS for an MIMO system with 64-QAM and K̃ = Ñ = 2.
Comparison of MMSE-PIC, STSSD (Lmax = 0.1, 0.4,+∞) and SISO KD.

Fig. 15. Worst-case complexity as the 99.9% percentile of the number of
elementary operations (sums and products) needed for algorithm implemen-
tation vs SNR (dB); accumulation of the first six iterations of the IDDS for
an MIMO system with 64-QAM and K̃ = Ñ = 2. Comparison of STSSD
(Lmax = 0.1, 0.4,+∞) and SISO KD.

without clipping over the considered range of SNR and lower
than the one of the STSSD with Lmax = 0.4 for low values of
SNR, while they are comparable for higher values of SNR.

Fig. 12 shows the performance for iterations 1, 2 and 6 for
the case K̃ = Ñ = 2 with 64-QAM. For each iteration, the
STSSD without clipping, the STSSD with Lmax = 0.4 and the
SISO KD achieve roughly the same performance, which is very
close to the optimum in the sixth iteration at BER = 10−3.
Conversely, the STSSD with Lmax = 0.1 achieves BER equal
to 10−3 with 1 dB of SNR more w.r.t. the optimum in the sixth
iteration. The MMSE-PIC is even worse in the second and sixth
iteration.
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Fig. 16. BER vs SNR (dB) for an MIMO system with the IDDS, 64-QAM and
K̃ = Ñ = 4. Comparison of MMSE-PIC, STSSD (Lmax = 0.1, 0.4,+∞)
and SISO KD.

Fig. 17. Average number of elementary operations (sums and products)
needed for algorithm implementation vs SNR (dB); first iteration of the IDDS
for an MIMO system with 64-QAM and K̃ = Ñ = 4. Comparison of MMSE-
PIC, STSSD (Lmax = 0.1, 0.4,+∞) and SISO KD.

The complexity analysis is very similar to the case K̃ =
Ñ = 2 with 16-QAM. Indeed, the number of products and the
number of sums executed by the MMSE-PIC are between the
SISO KD and the STSSD with Lmax = 0.1 and very close to
the SISO KD, respectively. Furthermore, in the first iteration
(Fig. 13) and the first six iterations (Fig. 14) it can be noticed the
STSSD brings down the complexity as Lmax decreases, but the
SISO KD outperforms the STSSD for all the considered values
of Lmax for both sums and products. This is also confirmed by
the worst-case complexity, as shown in Fig. 15.

Also for the case K̃ = Ñ = 4 with 64-QAM the perfor-
mance of the SISO KD is practically equal to the Max-Log
one, as shown in Fig. 16, and the complexity reduction w.r.t.
the STSSD without clipping and the STSSD with Lmax = 0.4

Fig. 18. Average number of elementary operations (sums and products)
needed for algorithm implementation vs SNR (dB); accumulation of the first six
iterations of the IDDS for an MIMO system with 64-QAM and K̃ = Ñ = 4.
Comparison of MMSE-PIC, STSSD (Lmax = 0.1, 0.4,+∞) and SISO KD.

Fig. 19. Worst-case complexity as the 99.9% percentile of the number of
elementary operations (sums and products) needed for algorithm implemen-
tation vs SNR (dB); accumulation of the first six iterations of the IDDS for
an MIMO system with 64-QAM and K̃ = Ñ = 4. Comparison of STSSD
(Lmax = 0.1, 0.4,+∞) and SISO KD.

is achieved, as shown in Figs. 17 and 18 for the average number
of operations and in Fig. 19 for the worst-case complexity.

Finally, a simulation has been conducted to evaluate the
capability of the SISO KD in an underdetermined setup with
K̃ = 4 and Ñ = 2 (all the other parameters are the same as
in the previous setups). The results are shown in Fig. 20,
where the first three iterations of the IDDS with optimal SISO
detection, Max-Log detection and the SISO KD are compared.
It is apparent that in the underdetermined case the Max-Log
approximation entails a non-negligible performance gap w.r.t.
optimal detection, clearly evident in the third iteration. How-
ever, as can be readily noted, the SISO KD does not further
reduce the performance.
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Fig. 20. BER vs SNR (dB) for an MIMO system with the IDDS, 16-QAM,
K̃ = 4 and Ñ = 2. Comparison of the optimal SISO detector, Max-Log
approximated SISO detector and SISO KD.

VII. CONCLUSION

We proposed an SISO MIMO detector, named SISO KD,
which is a single tree-search branch-and-bound algorithm. It
achieves significant complexity reduction through the domi-
nance conditions, which exploit the interference properties of
the channel matrix and the a-priori information on the trans-
mitted bits. We presented an analysis of the computational
complexity of the proposed algorithm, based on the number
of elementary operations required for its implementation. We
demonstrated the effectiveness of the SISO KD through simu-
lations, which show performance very close to the optimal so-
lution and a remarkable complexity reduction w.r.t. the STSSD.

APPENDIX

LOCAL MINIMA CONDITIONS

Here we derive the conditions for a generic x to be a local
minimum of (9). Starting from (13), we get

‖y −Hx‖2
σ2

− 1

2

K∑
j=1

xjλ
A
j

<
‖y −Hαi(x)‖2

σ2
− 1

2

K∑
j=1

αij(x)λ
A
j , (41)

where αij(x) is the jth element of αi(x),

‖y −Hαi(x)‖2 − ‖y −Hx‖2
σ2

+ xiλ
A
i > 0, (42)

αi(x)
THTHαi(x)− xTHTHx− 2αi(x)

THTy

σ2

+
2xTHTy

σ2
+ xiλ

A
i > 0. (43)

Adding and subtracting xTHTHαi(x) at the numerator

of the fraction and defining �x
Δ
= x− αi(x) = [01×i−1 2xi

01×K−i]
T , we get

2(�x)THTy − (�x)THTHαi(x)− xTHTH�x

σ2

+xiλ
A
i > 0. (44)

Adding and subtracting (�x)THTHx, we obtain

2(�x)THTy + (�x)THTH�x− 2(�x)THTHx

σ2

+ xiλ
A
i > 0, (45)

4xih
T
i y + 4hT

i hi − 4xih
T
i Hx

σ2
+ xiλ

A
i > 0, (46)

which provides (14).
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